

"Feeding and managing ewes for improved health and efficiency"

at the farm of:

Isaac Crilly

7 Fort Road, Lislaird. Castlederg. BT81 7UL

Tuesday 21st January, 2014

Researching the way forward

Feeding and managing ewes for improved efficiency

Today's farm walk aims at providing you with information and tools to inform feeding and managing decisions

Topics for discussion include:

AgriSearc

- 1. Breeding strategies for a better ewe efficiency
- 2. Selecting for ewe prolificacy and easier-care traits
- 3. Diagnosis and treatment of lameness in sheep
- 4. Sustainable methods for liver fluke control
- 5. Feeding strategies for indoor lambing systems

LMC

Farm overview

Isaac Crilly, Lislaird, Castlederg

450 breeding ewes, including ewe lambs, on 70 acres of lowland

Grassland management

- Reseeding on a "need to" basis
- Aiming to increase clover content
- Spot spraying when necessary

Housing/handling systems

- Space for 500 ewes lambing indoors (March)
- Wire mesh flooring
- Labour-efficient housing system, handling facilities and lambing area

Animal Health

- FecPak system to determine worm burdens & need for dosing
- Strict culling policy

AgriSearc

Use of veterinary students at lambing – reduced mortality

Marketing & other farm uses

- All lambs are marketed through Tyrone Quality Livestock Ltd., Dunbia
- Other farm uses:
 - Undertake research trials (with AFBI Hillsborough)
 - Focus Farm

Breeding programme

Isaac Crilly, Lislaird, Castlederg

Breeds

- Maternal sires: Belclare and NZ genetics
- Terminal sires: Charollais and Meatlinc
- Maternal sires: NZ Suffolk rams used for easy lambing, also Highlander, Texel and Belclare (AFBI trials)
- Replacements selected from most prolific ewes

Ram selection

- Rams are now selected, where possible, using performance records (EBVs)
- Main criteria used in ram selection:
 - Prolificacy/maternal ability
 - Carcass quality
 - Worm resistance
 - Naturally reared

Key objectives

AgriSearc

To breed durable ewes from within the flock with the capacity to increase numbers of lambs weaned and kg produced/ha

- To produce lambs to meet market requirements
- To have a labour efficient, easier-care working system

Breeding strategies for efficient lowland flocks

Breeding more efficient lowland ewes

- Poor ewe fertility and lambing difficulties are the main constraints on profitability
- Rotational breeding strategy: to introduce maternal traits, whilst still delivering high lamb output to market specifications

AgriSearc

Agriculture and Rural Development

Performance of composite ewes on 6 lowland flocks (1 and 2 crop ewes)

	Ewe breed				
	Lleyn/ Belclare X	Highlander X	Romney X	Texel X	
Weight at mating (kg)	59	60	60	60	
Lambs weaned per 100 ewes lambed	146	167	149	135	
% ewes lambed unassisted	86	89	82	88	
Lamb growth rate (kg/d)	0.24	0.26	0.25	0.26	
Total wt lamb weaned (kg/ewe)	48	55	52	53	
Ewe efficiency (kg lamb weaned per kg ewe)	0.82	0.90	0.86	0.88	

- > Highest weaning rates for Highlander X ewes
- Good efficiencies of 80-90%
- Work ongoing to assess lifetime performance

Agriculture and Rural Development

Breeding strategies for efficient hill flocks

Working in partnership with industry

Breeding more efficient hill ewes

- Ewe fertility and lamb growth performance are the main constraints on profitability
- Efficiency of crossbred ewes shown to be equal or superior to that of purebred Blackface (BF), in particular Lleyn x BF and Swaledale x BF
- > 3-way crosses: to introduce additional traits

AgriSearc

Performance of new hill ewe types on 6 commercial flocks (1 and 2 crop ewes)

Ewe breed	Mating weight (kg)	Lambs born per 100 ewes lambed	Lambs weaned per 100 ewes lambed	Ewe efficiency (kg lamb weaned per kg ewe)
Blackface X	47	131	114	0.92
Swaledale X	48	156	136	0.96
Belclare X	53	149	120	0.91
Highlander X	50	154	131	0.97
Lleyn X	51	128	113	0.88
Texel X	53	134	110	0.82

High level of performance (average 1.21 lambs weaned/ewe)
Efficiencies: 15-20% higher than BF ewes (except Texel X)

Selecting ewes for maternal traits

Hillsborough Management Recording Scheme

Objectives:

- Identify ewes in commercial flocks suited to easier-care systems
- Breed replacement sheep that will require less intervention at lambing in future easier-care systems

Recording & analysis:

AgriSea

- Step 1: Simple recording of key traits for prolificacy and easier-care traits (provision of summary report)
- Step 2: Simple recording of lamb live weights (provision of performance index of ewes)

Ewes and replacements ranked on performance on a scale 0-100

Hillsborough Management Recording Scheme

Working in partnership with industry

Lambing booklet

AgriSearc

Step 2: Lamb live weight book

Key traits for productivity: number of lambs reared per ewe and lamb weight

Hillsborough Management Recording Scheme

Summary reports (examples)

From lambing book

Farm name		2010
Ewe Details		% of total
Total number of ewes	84	
Average number of lambs per ewe	1.5	145.2
No. of ewes with 1 lamb	43	51.2
No. of ewes with 2 lambs	34	40.5
No. of ewes with 3 lambs	7	8.3
No. of ewes lambed unaided	55	65.5
No. of ewes that needed some help	18	21.4
No. of ewes that needed manual help	9	10.7
Unavailable data	2	2.4
No. of ewes who follows lamb whatever	73	86.9
No. of ewes who stands well back	2	2.4
Unavailable data	9	10.7
Lamb Details		% of total
Total number of lambs	122	
Number of lambs born dead	1	0.8
Number of lambs born alive	121	99.2
No. of lambs up to suck	116	95.9
No. of lambs slow to suck	0	0.0
No. of lambs needing help to suck	5	4.1

From lamb live weight book

Farm n	ame				2	011	
Ewe	Sire	Age	No lambs	LDS	МА	wwт	INDEX
281	BL	3	2	1	1	77	100
304	T(P)	2	2	1	1	92	98
211	S(M)	3	2	1	1	92	87
310	T(F)	2	3	1	1	113	86
272	T(G)	3	3	1	1	119	85
109	T(P)	3	2	1	1	77	84
286	S(B)	3	2	1	1	89	84
207	S(M)	3	2	1	1	85	83
153	S(B)	3	2	1	1	88	83
287	S(B)	3	2	1	1	85	82
200	T(F)	3	2	1	1	92	81
302	T(P)	2	2	2	1	92	81
280	T(F)	3	2	1	1	91	80
140	T(F)	3	2	1	1	90	80
251	S(T)	3	2	1	1	84	79
177	T(V)	3	2	1	1	78	77
94	S(W)	3	2	2	1	78	74
205	S(M)	3	2	2	1	98	73
265	T(G)	3	3	2	1	127	72
326	S(M)	2	2	2	1	81	70
		•••					

LMC

Department of Agriculture and Rural Development www.dardni.gov.uk AgriSearch

Hillsborough Management Recording Scheme

Towards easier care systems

Case study

Average number of ewes in the flock: 85 (mostly Blackface)

		2007	2008	2010	2013	Trend
Eas	sier management traits					
	% ewes lambed unaided	65	55	67	80	+
	% ewes who follows lamb	77	72	97	97	+
	% lambs up to suck	93	95	96	94	+
Pro	ductivity traits					
	% ewes with > 1 lamb	42	41	49	47	+
	% lambs born alive	97	98	99	98	+

AgriSearch

Diagnosis and treatment of lameness in sheep

Do you know the cause ?

- Lameness can cause long-term pain and increase production costs (due to reduced feed intake) and treatment costs
- Knowing the cause of lame sheep is the first step towards its treatment, control and prevention
- > Main issues identified in NI sheep flocks surveyed:

Agriculture and Rural Development

Towards a better control

Booklet available to:

- Better diagnose the cause
- Identify appropriate treatment options
- Know how to prevent the conditions
- Follow best practice for foot bathing, foot trimming

Diagnosis and treatment of lameness in sheep

Treatment and prevention

Key points

Agriculture and Rural Development

- Always separate lame sheep and treat last
- Always record or mark treated animals
- Seek veterinary advice if necessary
- In most cases, routine trimming of all feet is unnecessary
- When foot trimming, clean and disinfect foot shears and treatment area, and dispose of any hoof trimmings
- After treatments, animals should stand on a hard, clean and dry surface to maximise efficacy

AgriSe

The 'Stamp out lameness' Campaign

- 1. Cull badly or repeatedly infected animals
- 2. Quarantine incoming animals
- 3. Correct diagnosis and prompt treatment
- 4. Avoid spreading infection at handling and gathering
- 5. Adopt a footrot vaccination program

Agriculture and Rural Development

Treatment of Liver Fluke in Sheep

- Choose the right product
- Re-infection and re-treatment
 no residual effect
- Use of adulticides

AgriSearc

- Avoid unnecessary use of combinations
- <u>Correct</u> dose rate, drenching / application technique

Indoor lambing system

Feeding strategy at Isaac Crilly's Farm

- > All concentrate diet, no silage
- Ewes housed mid December
- Lambing starts mid March
- Feed levels for twin-bearing ewes

		Weeks before lambing					
Kg/day	9	6	4	2	1		
Wheat Straw	0.36	0.42	0.49	0.56	0.56		
Soya Hulls	0.67	0.8	0.92	1.1	1.1		
Soyabean	0.11	0.14	0.16	0.23	0.23		
Predicted intake	1.3	1.4	1.5	1.6	1.6		
Actual intake	1	1.2	1.4	1.6	1.6		

Working in partnership with industry

Singles and triplets feed accordingly

AgriSearch

Indoor lambing system

Silage and concentrate diets

- Produce high quality silage to reduce concentrate input
- Match concentrate requirements with forage quality to ensure
 - Viable lambs
 - Udder development
 - > Adequate colostrum
 - Maternal bonding

AgriSearc

Agriculture and Rural Development

Silage Quality					
	Good	Poor			
Dry-matter %	28.4	13.3			
ME (MJ/kg DM)	11.2	8.4			
CP (% DM)	12.1	8.2			
D-value (% DM)	67.3	56.4			
Concentrate feed over 6 weeks (kg)	12	28			

- Feed rate driven by forage quality
- Must be cost effective

Indoor lambing system

Concentrate supplementation

Key issues:

Agriculture and Rural Development

- Assess nutritional status of ewes and establish litter size
- Know the feeding value of your silage
- Consider the pattern and frequency of meal feeding
- Concentrate composition is important
 - Energy: Target 11-12 MJ/kg
 - Cereals: feed whole with hay or processed with silage

Working in partnership with industry

- Beet pulps/soya hulls
- Protein: Target 17-21% CP & 45-55 g/kg DUP
- Vit/Min: Selenium0.2-0.4 mg/kg

AgriSearch

- Vitamin E 100-150 IU/kg

Benchmarking Farm Performance

Isaac Crilly, Lislaird, Castlederg

́́и́LМС

Physical performance

			201	2/13
	2012/13	2013/14	Average	Тор 25%
Number of ewes	500	496	187	232
Lambs sold/ewe	1.62	1.58	1.48	1.62
Concentrates fed (kg/ewe)	171	209	69	52
Av. carcass weight (kg)	20	19	21	22
Kg carcass/ha	523	567	236	302

Agri<mark>Search</mark>®

Benchmarking Farm Performance

Isaac Crilly, Lislaird, Castlederg

Financial performance (£/ewe)

			201	2/13
	2012/13	2013/14	Average	Тор 25%
Lamb sales	113	115	108	123
Replacement cost	-2	-4	-12	-9
Total output	113	114	99	118
Total variable costs	63	82	50	42
Gross margin	48	29	49	75

Gross margin (£ per Ha)	775	548	374	624
Ewes/ha	16	19	7	8

AgriSearch

Researching the way forward

Other current sheep research projects

- Interrelationships between trace element status, gastrointestinal parasite infection and growth performance of lambs
- Development of sustainable livestock systems to promote biodiversity within hill areas (by identifying breeding and grazing strategies)
- Factors affecting eartag retention in sheep
- Effects of breed and forage type on methane emissions from sheep
- > Meat quality of entire male versus castrate lambs finished on forage-based diets

Working in partnership with industry

LMC

<u>NOTES</u>